The effect of wildfires on the composition of bottom sediments of rivers and lakes in urbanized areas of the Middle Amur lowland
https://doi.org/10.25587/SVFU.2022.25.1.014
Abstract
Wild fires is an important factor in the functioning and transformation of geosystems. The aim of the study is to assess the impact of fires on the aquatic ecosystems of urbanized areas of the Middle Amur Lowland (within Khabarovsk Krai). The tasks of the work are to assess the burnability and pyrogenic transformation of the territory based on the analysis of long-term earth remote sensing (ERS) data series and to analyze the composition and patterns of post-pyrogenic changes in the bottom sediments of the key site (basin of the Simmi River, small tributary of the Amur River). Cloudless data of free access from Landsat 5, 7 and 8 satellites for 37-yr (1984 – 2020) were used to determine the average long-term characteristics of wildfires and trends in their changes. ERS processing was carried out by the expert decryption method in the ArcGIS 10.5 program.
The analysis of allocated wild fires indicates a significant scale and high repeatability of pyrogenic effects on the geosystems of the territory. Grass fires affected from 27 to 35 % of non-forest ecosystems, exceed 50 % in some years, which is comparable to the areas of forest fires. But according to official data, due to the imperfection of the methods of automatic mapping of the burnt-out territory, non-forest fires in the region account for only 8.9 %.
The bottom sediments were studied in the key site. Sampling (15 samples, according to standard methods) was carried out in May 2018 (in the third year after the autumn fire of 2016) and in July 2019 after the spring (March–April) fire. The main research methods were granulometric and gross chemical analyses and scanning electron microscopy (VEGA 3 LM scanning electron microscope, TESCAN, Czech Republic). The granulometric composition was determined by laser diffraction on a particle size analyzer (SALD-2300, Shimadzu, Japan). The gross composition was determined by X-ray fluorescence method (Pioneer S4, Bruker AXS, Germany). Our data indicate that the passage of grass fires in the catchment area entails a change in the chemical composition of BS formed in the post-pyrogenic period. In the first months after the fire, the reaction of the river system is the sequestration of soluble P compounds, which are formed during “fire” mineralization. This occurs as a result of the binding of phosphate ions into vivianite. It is precipitated on the surface of clay-ferruginous microaggregates of a suspended sediment fraction, which over time (2-3 years) is carried out by the stream. The latter leads to a reduction in the scale of the impact of the fire.
Keywords
About the Authors
A. V. OstroukhovRussian Federation
OSTROUKHOV Andrei Viacheslavovich – Candidate of Geographical Sciences, Leading Researcher
Khabarovsk
G. V. Kharitonova
Russian Federation
KHARITONOVA Galina Vladimirovna – Doctor of Biological Sciences, Principal researcher
Khabarovsk
References
1. Canadell J.G., Pataki D.E., Pitelka L.F. (Eds.). Terrestrial ecosystems in a changing world. – Springer Science & Business Media, 2007.
2. Zhou Y., Xing X., Lang J., Chen D., Cheng S., Wei L., Wei X., Liu C. A comprehensive biomass burning emission inventory with high spatial and temporal resolution in China // Atmos. Chem. Phys. – 2017. – vol. 17. – P. 2839–2864. doi:10.5194/acp-17-2839-2017.
3. Huang X., Li M., Li J., Song Y. A high-resolution emission inventory of crop burning in fields in China based on MODIS thermal anomalies/fire products // Atmos. Environ. – 2012. – 50. – P. 9–15. doi:10.1016/j.atmosenv.2012.01.017.
4. Burling I.R., Yokelson R.J., Akagi S.K., Urbanski S., Wold C., Griffith D.W.T., Johnson T.J., Reardon J., Weise D.R. Airborne and ground-based measurements of the trace gases and particles emitted by prescribed fires in the United States // Atmos. Chem. Phys. – 2011. – vol. 11. – P. 12197–12216.
5. Sun L., Hu H., Guo Q., L X. Estimating carbon emissions from forest fires during 1980 to 1999 in Daxing’an Mountain, China // Afr. J. Biotech. – 2011. – vol. 10, iss. 41. – P. 8046–8053.
6. Vivchar A.V., Moiseenko K.B., Pankratova N.V. Estimates of carbon monoxide emissions from wildfires in Northern Eurasia for air quality assessment and climate modeling // Izv. Atmos. Ocean. Phys. – 2010. – vol. 46, iss. 3. – P. 281–293.
7. Kukavskaya E.A., Soja A.J., Petkov A.P., Ponomarev E.I., Ivanova G.A., Conard S.G., Fire emissions estimates in Siberia: Evaluation of uncertainties in area burned, land cover, and fuel consumption // Can. J. For. Res. – 2012. – vol. 43, iss. 5. – P. 493–506. doi:10.1139/cjfr-2012-0367.
8. Eliseev A.V., Mokhov I.I., Chernokulsky A.V. Influence of ground and peat fires on CO2 emissions into the atmosphere // Dokl. Earth Sc. – 2014. – vol. 459. – P. 1565–1569. doi:10.1134/S1028334X14120034.
9. Ribeiro K., Pacheco F.S., Ferreira J.W., de Sousa-Neto E.R., Hastie A., Krieger F.G.C., Alvalá P.C., Forti M.C., Ometto J.P. Tropical peatlands and their contribution to the global carbon cycle and climate change // Glob. Chang. Biol. – 2021. – vol. 27, iss. 3. – P. 489–505. doi:10.1111/gcb.15408.
10. Korontzi S., McCarty J., Justice C. Monitoring agricultural burning in the Mississippi River valley region from the Moderate Resolution Imaging Spectroradiometer (MODIS) // J. Air Waste Manag. Assoc. – 2008. – vol. 58, iss. 9. – P. 1235–1239. doi:10.3155/1047-3289.58.9.1235.
11. McCarty J., Krylov A., Prishchepov A., Banach D., Tyukavina A., Potapov P., Turubanova S. Agricultural fires in European Russia, Belarus, and Lithuania and their impact on air quality, 2002–2012 // Gutman, G., Radeloff, V. (Eds.), Land-Cover and Land-Use Changes in Eastern Europe after the Collapse of the Soviet Union in 1991. – Springer International Publishing, Switzerland, 2017. – P. 193–221. doi:10.1007/978-3-319-42638-9_9.
12. Gutman G., Radeloff V. Land-Cover and Land-Use Changes in Eastern Europe after the Collapse of the Soviet Union in 1991 // Springer, 2017. doi:10.1007/978-3-319-42638-9.
13. Li J., Li Y., Bo Y., Xie S., 2016. High-resolution historical emission inventories of crop residue burning in fields in China for the period 1990–2013 // Atmos. Environ. – 2016. – vol. 138. doi:10.1016/j.atmosenv.2016.05.002.
14. Bartalev S.A. Ocenka ploshchadi pozharov na osnove kompleksirovaniya sputnikovyh dannyh razlichnogo prostranstvennogo razresheniya MODIS i Landsat-TM/ETM+ / S.A. Bartalev, V.A. Egorov, V.YU. Efremov, E.A. Lupyan, F.V. Stycenko, E.V. Flitman // Sovremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa. – 2012. – tom 9, № 2. – S. 9-26.
15. Romanenkov V., Rukhovich D., Koroleva P., McCarty J. Estimating black carbon emissions from agricultural burning, in: Mueller, L., Saparov, A., Lischeid, G. (Eds.). Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia // Environmental Science and Engineering, 2014. doi:10.1007/978-3-319-01017-5_20.
16. Tan Z., Tieszen L.L., Zhu Z., Liu S., Howard S.M. An estimate of carbon emissions from 2004 wildfires across Alaskan Yukon River Basin // Carbon Balance Manag. – 2007. – vol. 2, iss. 12. doi:10.1186/1750-0680-2-12.
17. Kusangaya S., Sithole V.B., 2015. Remote sensing-based fire frequency mapping in a savannah rangeland // S. Afr. J. Geomat. – 2015. – vol. 4, iss. 1.
18. Ostroukhov A.V., Klimina E.M. Survey of Middle Amur lowland terrain transformations based on remote sensing data. Proceedings of joint symposium on tropical peatland restoration 2018 // Responsible Management of Tropical Peatland following up to The Jakarta Declaration Jakarta, February 2018. – IKAPI, Bogor, Indonesia, 2018. – P. 123–129.
19. Informacionnaya sistema distancionnogo monitoringa Federal’nogo agentstva lesnogo hozyajstva. Blok monitoringa pozharnoj opasnosti // (rezhim dostupa: https://nffc.aviales.ru/main_pages/index.shtml) data obrashcheniya: 09.02.2021.
20. Minshall G.W., Robinson C.T., Royer T.V. Stream Ecosystem Responses to the 1988 Wildfires // Yellowstone Science. Simmer. – 1998. – R. 15-22.
21. Ukraincev A.V., Vozdejstvie lesnyh pozharov na sostoyanie rek Zaigraevskogo rajona Respubliki Buryatii / A.V. Ukraincev, A.M. Plyusnin, M.K. CHernyavskij // Vodnye resursy. – 2019. – tom 46, № 1. – S. 14-23. doi:10.31857/S0321-059646114-23.
22. Bayley S.E., Schindler D.W., Beaty K.G. Effects of multiple fires on nutrient yields from streams draining boreal forest and fen watersheds: nitrogen and phosphorus // Canadian J. of Fisheries and Aquatic Sciences. – 1992. – vol. 29. – R. 584-596.
23. Fu Y., Li R., Wang X., Bergeron Y., Valeria O., Chavardès R.D., Wang Y., Hu J. Fire detection and fire radiative power in forests and low-biomass lands in Northeast Asia: MODIS versus VIIRS Fire Products // Remote Sens. –2020. – vol. 12 (18), iss. 2870. doi:10.3390/rs12182870.
24. Salvoldi M., Siaki G., Sprintsin M., Karnieli A. Burned area mapping using multi-temporal Sentinel-2 data by applying the relative differenced aerosol-free vegetation index (RdAFRI) // Remote Sens. – 2020. – vol. 12, 17, iss. 2753. doi:10.3390/rs12172753.
25. Long T., Zhang Z., He G., Jiao W., Tang C., Wu B., Zhang X., Wang G., Yin R. 30 m Resolution Global Annual Burned Area Mapping Based on Landsat Images and Google Earth Engine // Remote Sens. – 2019. – vol. 11, iss. 489.
26. Bartalev S.A., Egorov V.A., Loupian E.A., Uvarov I. Multiyear circumpolar assessment of the area burnt in boreal ecosystems using SPOT-VEGETATION // Intern. J. Remote Sens. – 2007. – vol. 28, iss. 6. – P. 1397– 1404. doi:10.1080/01431160600840978.
27. SHeshukov M.A., Savchenko A.P., Peshkov V.V. Lesnye pozhary i bor’ba s nimi na severe Dal’nego Vostoka. – Habarovsk: Kn. izd-vo, 1992. – 96 s.
28. Kharitonova G.V., Shein E.V., Krutikova V.O., Ostrouhov A.V., Kharitonov E.V. (2019) Secondary carbonates in edaphic components of ecosystems // Soil Physics, IOP Conf. Series: Earth and Environmental Science 368. – IOP Publishing, 2019. doi:10.1088/1755-1315/368/1/012020.
29. Sheingauz A. 1996. The role of fire in forest cover, structure, and dynamics in the Russian Far East // Goldammer I.G., Furyaev V.V. (Eds.) Fire in ecosystems of Boreal Eurasia, 1996. – P. 186–190.
30. Lesa Dal’nego Vostoka. – M.: Lesnaya promyshlennost’, 1969. – 392 s.
31. Argañaraz J., Gavier-Pizarro G., Zak M., Bellis L. Fire regime, climate, and vegetation in the Sierras de Córdoba, Argentina // Fire Ecol. – 2015. – vol. iss. 11. – P. 55–73. doi:10.4996/fireecology.1101055.
32. Fire Information for Resource Management System (FIRMS) (rezhim dostupa: https://firms.modaps.eosdis.nasa.gov/download/) data obrashcheniya: 09.02.2021.
33. García-Lázaro J.R., Moreno-Ruiz J.A., Riaño D., Arbelo M. Estimation of burned area in the northeastern Siberian boreal forest from a Long-Term Data Record (LTDR) 1982–2015 time series // Remote Sensing. – 2018. – vol. 10, iss. 6. – P. 940. doi:10.3390/rs10060940.
34. Ying L., Shen Z., Yang M., Piao S. Wildfire detection probability of MODIS fire products under the constraint of environmental factors: A study based on confirmed ground wildfire records // Remote Sens. – 2019. – vol. 11, iss. 24. – P. 3031. doi:10.3390/rs11243031.
35. Karta prirodnyh pozharov Rossii v 2020 godu. 2021. Greenpeace, (rezhim dostupa: https://greenpeace.ru/news/2021/04/06/greenpeace-podschital-ploshhad-vseh-landshaftnyh-pozharov-v-rossii-v-2020-godu/) data obrashcheniya: 09.02.2021.
36. Gosudarstvennyj doklad o sostoyanii i ohrane okruzhayushchej sredy Habarovskogo kraya za 2019 god. 2020. (rezhim dostupa: https://mpr.khabkrai.ru/?menu=getfile&id=8149) data obrashcheniya: 20.05.2021.
37. Urbanski S.P., Wei Min Hao, Stephen B. Chemical Composition of Wildland Fire Emissions // Developments in Environmental Science. Bytnerowicz A., Arbaugh M., Riebau A., Andersen C. (Eds), 2009. – vol. 8. – P. 79–107. doi:10.1016/S1474-8177(08)00004-1.
38. Nunes J.P., Doerr S.H., Sheridan G., Neris J., Santín C., Emelko M.B., Silins U., Robichaud P.R., Elliot W.J., Keizer J. Assessing water contamina-tion risk from vegetation fires: Challenges, opportunities and a framework for progress // Hydrological Processes. – 2018. – vol. 32(5). – P. 687–694. doi:10.1002/hyp.11434.
39. Rothe M., Frederichs T., Eder M., Kleeberg A., Hupfer M.: Evidence for vivianite formation and its contribution to long-term phosphorus retention in a recent lake sediment: a novel analytical approach // Biogeosciences. – 2014. – vol. 11. – P. 5169–5180. doi:10.5194/bg-11-5169-2014.
40. Rothe M., Kleeberg A., Hupfer M. The occurrence, identification and environmental relevance of vivianite in waterlogged soils and aquatic sediments // Earth-Science Reviews. – 2016.- vol. 158. – P. 51–64. doi:10.1016/j.earscirev.2016.04.008.
41. Zhiyao Tang, Wenting Xu, Guoyi Zhou, Yongfei Bai, Jiaxiang Li, Xuli Tang, Dima Chen, Qing Liu, Wenhong Ma, Gaoming Xiong, Honglin He, Nianpeng He, Yanpei Guo, Qiang Guo, Jiangling Zhu, Wenxuan Han, Huifeng Hu, Jingyun Fang, Zongqiang Xie Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems // PNAS. – 2018. – vol. 115(16). – P. 4033–4038. doi:10.1073/pnas.1700295114.
42. Kharitonova G.V., Ostroukhov A.V., Tyugai Z.N., Kruticova V.O. Labile Components of Botton Sediments in the Simmi River (Bolon State Nature) // Moscow University Soil Science Bulletin. – 2020. – vol. 75 (4-5). – P. 168-175. doi:10.3103/S0147687420040043.
43. Kharitonova G.V., Ostroukhov A.V., Tyugai Z.N., Kruticova V.O. Impact of fires on eutrophication in rivers (the Simmy River, the Bolon Nature Reserve) // IOP Conf. Ser.: Earth Environ. Sci., 2021. doi:10.1088/1755-1315/895/1/012014.
Review
For citations:
Ostroukhov A.V., Kharitonova G.V. The effect of wildfires on the composition of bottom sediments of rivers and lakes in urbanized areas of the Middle Amur lowland. Vestnik of North-Eastern Federal University Series "Earth Sciences". 2022;(1):58-71. (In Russ.) https://doi.org/10.25587/SVFU.2022.25.1.014