Preview

Vestnik of North-Eastern Federal University Series "Earth Sciences"

Advanced search

Modeling natural gas underground storage in the hydrated state in permafrost aquifers

https://doi.org/10.25587/SVFU.2022.26.2.002

Abstract

The paper presents the results of a computational experiment aimed at obtaining criteria for the selection of geological structures for the creation of a natural gas underground storage in the hydrated state in permafrost aquifers. The advantages of this method of underground gas storage are greater compactness and stability of the storage, because the gas in the hydrated state occupies a much smaller volume than in the free state at the same temperature and pressure. A mathematical model of gas injection through a single well into a horizontal aquifer is presented, which takes into account all the basic physical and thermodynamic features of the process under consideration, including gas compressibility, the Joule-Thomson effect, adiabatic expansion, non-isothermal filtration of water and gas, mass transfer between gas, water and hydrate. This model is used to estimate the dynamics of the distribution of hydrate saturation, water saturation, pressure and temperature in the aquifer at different intensity values of gas injection and filtration-capacitance properties of the reservoir. In addition to porosity and permeability, the selected reservoir (depleted gas or aquifer) is characterized by initial values of pressure, temperature and water saturation. The variable parameters are the reservoir porosity and the volume flow rate of the injected gas. The results of the calculations showed that aquifers should be chosen for the creation of underground gas storage facilities in a hydrated state, depending on their reservoir properties and hydrodynamic characteristics. In further studies, it is necessary to evaluate the thermal interaction of such storages with the surrounding rocks. To do this, the proposed mathematical model should be generalized in a twodimensional formulation. The results obtained and the mathematical model can be used to develop the scientific foundations of underground storage technology not only for natural gas, but also for associated petroleum gas, as well as greenhouse and toxic gases in a hydrate state.

About the Authors

I. I. Rozhin
Institute of Oil and Gas Problems SB RAS, Federal Research Center «Yakut Scientific Center SB RAS»
Russian Federation

ROZHIN Igor Ivanovich – Doctor of Technical Sciences, Associate Professor, Chief Researcher

Yakutsk



K. K. Argunova
Institute of Oil and Gas Problems SB RAS, Federal Research Center «Yakut Scientific Center SB RAS»
Russian Federation

ARGUNOVA Kira Konstantinovna – Candidate of Physical and Mathematical Sciences, Senior Researcher

Yakutsk



References

1. Makogon YU.F. Gazovye gidraty, preduprezhdenie ih obrazovaniya i ispol’zovanie. – M.: Nedra, 1985. – 208 s.

2. Istomin V.A. Fiziko-himicheskie issledovaniya gazovyh gidratov: problemy i perspektivy. – M.: TRC Gazprom, 2000. – 71 s.

3. Swinkels W.J.A.M., R.J.J. Drenth Thermal reservoir simulation model of production from naturally occurring gas hydrate accumulations // SPE Reservoir Evaluation and Engineering. – 2000. – vol. 3, iss. 6. – P. 559–566. doi:10.2118/68213-PA.

4. Sun X., K.K. Mohanty Kinetic simulation of methane hydrate formation and dissociation in porous media // Chemical Engineering Science. – 2006. – vol. 61, no. 1. – P. 3476–3495. doi:10.1016/j.ces.2005.12.017.

5. Uddin M., Coombe D.A., Law D.A., Gunter W.D. Numerical studies of gas-hydrates formation and decomposition in a geological reservoir // Journal of Energy Resources Technology. – 2008. – vol. 130, no. 3. – P. 032501-1. doi:10.101115/1.2956978.

6. Shagapov V.SH., Musakaev N.G. Dinamika obrazovaniya i razlozheniya gidratov v sistemah dobychi, transportirovki i hraneniya gaza. – M.: Nauka, 2016. – 240 s.

7. Musakaev N.G. Solution of the problem of natural gas storages creating in gas hydrate state in porous reservoirs / N.G. Musakaev, M.K. Khasanov // Mathematics. – 2020. – vol. 8, iss. 1. doi:10.3390/math8010036.

8. Musakaev N.G. CHislennoe issledovanie processa obrazovaniya gazovogo gidrata v poristom kollektore / N.G. Musakaev, S.L. Borodin, M.K. Hasanov // Prikladnaya mekhanika i tekhnicheskaya fizika. – 2021. – tom 62, № 4(368). – S. 57–67. doi:10.15372/PMTF20210406.

9. Khasanov M.K. Mathematical modeling of the process of gas injection into a reservoir with the formation of gas hydrate and melting ice / M.K. Khasanov, N.G. Musakaev // Lobachevskii Journal of Mathematics. – 2021. – vol. 42, no. 9. – P. 2151–2158. doi:10.1134/S1995080221090158.

10. Khasanov M.K. Gas hydrate formation of sulfur dioxide by injection of liquid carbon dioxide into a natural layer saturated with methane and ice / M.K. Khasanov, S.R. Kildibaeva // IOP Conference Series: Earth and Environmental Science. – 2019. – iss. 302. – 7 p. doi:10.1088/1755-1315/302/1/012053.

11. Khasanov M.K. Mathematical model of decomposition of methane hydrate during the injection of liquid carbon dioxide into a reservoir saturated with methane and its hydrate / M.K. Khasanov, M.V. Stolpovsky, S.R. Kildibaeva, N.G. Musakaev // Mathematics. – 2020. – vol. 8, no. 9. – 1482. doi:10.3390/math8091482.

12. Khasanov M.K. Mathematical model of carbon dioxide injection into a porous reservoir saturated with methane and its gas hydrate / M.K. Khasanov, G.R. Rafikova, N.G. Musakaev // Energies. – 2020. – vol. 13. – 440. doi:10.3390/en13020440.

13. Hasanov M.K. Matematicheskaya model’ inzhekcii uglekislogo gaza v gazogidratnyj plast / M.K. Hasanov, M.V. Stolpovskij // Teoreticheskie osnovy himicheskoj tekhnologii. – 2021. – tom 55, № 4. – S. 517–528. doi:10.31857/S0040357121030088.

14. Shagapov V.Sh. Formation of gas hydrates in a porous medium during an injection of cold gas / V.Sh. Shagapov, N.G. Musakaev, M.K. Khasanov // International Journal of Heat and Mass Transfer. – 2015. – vol. 84. – P. 1030–1039. doi:10.1016/j.ijheatmasstransfer.2015.01.105.

15. Shagapov V.SH. K teorii obrazovaniya gazogidrata v chastichno vodonasyshchennoj poristoj srede pri nagnetanii metana / V.SH. SHagapov, G.R. Rafikova, M.K. Hasanov // Teplofizika vysokih temperatur. – 2016. – tom 54, № 6. – S. 911–920. doi:10.7868/S004036441606017X.

16. Rozhin I.I. Termodinamicheskie effekty v matematicheskih modelyah dobychi prirodnogo gaza v severnyh regionah: dis. d.t.n. – Rozhin Igor’ Ivanovich: Institut problem nefti i gaza SO RAN, 2015. – YAkutsk. – 264 s.

17. Bondarev E.A. Matematicheskoe modelirovanie sozdaniya podzemnogo hranilishcha prirodnogo gaza v gidratnom sostoyanii / E.A. Bondarev, I.I. Rozhin, V.V. Popov, K.K. Argunova // Nauchnye trudy NIPI «Neftegaz» GNKAR. – 2015. – № 2. – S. 54–67. doi:10.5510/OGP20150200243.

18. Bondarev E.A. Ocenka vozmozhnosti podzemnogo hraneniya gidratov prirodnogo gaza v zone mnogoletnej merzloty / E.A. Bondarev, I.I. Rozhin, V.V. Popov, K.K. Argunova // Kriosfera Zemli. – 2015. – tom XIX, № 4. – S. 64–74.

19. Bondarev E.A. Underground storage of natural gas in hydrate state: primary injection stage / E.A. Bondarev, I.I. Rozhin, V.V. Popov, K.K. Argunova // Journal of Engineering Thermophysics. – 2018. – vol. 27, no. 2. – P. 221–231. doi:10.1134/S181023281802008X.

20. Bondarev, E.A. Simulation of multiphase flow in porous media accompanied by gas hydrate formation and dissociation / E.A. Bondarev, T.A. Kapitonova // Russian Journal of Engineering Thermophysics. – 1999. – vol. 9, no. 1-2. – P. 83–97.

21. Charnyj I.A. Podzemnaya gidrogazodinamika. – M.: Gostoptekhizdat, 1963. – 396 s.

22. Bondarev, E.A. Ploskoparallel’naya neizotermicheskaya fil’traciya gaza: rol’ teploperenosa / E.A. Bondarev, K.K. Argunova, I.I. Rozhin // Inzhenerno-fizicheskij zhurnal. – 2009. – tom 82, № 6. – S. 1059–1065.

23. Bondarev E.A. Plane-parallel nonisothermal gas filtration: the role of thermodynamics / E.A. Bondarev, K.K. Argunova, I.I. Rozhin // Journal of Engineering Thermophysics. – 2009. – Vol. 18, No. 2. – P. 168–176. doi:10.1134/S1810232809020088.

24. Basniev K.S., Vlasov A.M., Kochina I.N., Maksimov V.M. Podzemnaya gidravlika. – M.: Nedra, 1986. – 304 s.

25. Bondarev E.A., Babe G.D., Grojsman A.G., Kanibolotskij M.A. Mekhanika obrazovaniya gidratov v gazovyh potokah. – Novosibirsk: Nauka, Sib. otd-nie, 1976. – 157 s.

26. Istomin V.A., Kvon V.G. Preduprezhdenie i likvidaciya gazovyh gidratov v sistemah dobychi gaza. – M.: OOO «IRC Gazprom», 2004. – 506 s.

27. Sloan E.D., Koh C.A. Clathrate hydrates of natural gases. – Boca Raton: Taylor&Francis Group/CRC Press, 2008. – 720 p.

28. Latonov V.V. Raschet koefficienta szhimaemosti prirodnyh gazov / V.V. Latonov, G.R. Gurevich // Gazovaya promyshlennost’. – 1969. – № 2. – S. 7–9.

29. Kay W.B. Density of hydrocarbon gases and vapors at high temperature and pressures // Industrial & Engineering Chemistry Research. – 1936. – Vol. 28. – P. 1014–1019.

30. Bondarev E.A. Dinamika obrazovaniya gidratov pri dobyche prirodnogo gaza / E.A. Bondarev, V.V. Popov // Vychislitel’nye tekhnologii. – 2002. – № 1. – S. 28–33.

31. Vasil’ev V.I., Popov V.V., Vasil’ev V.I., Timofeeva T.S. Vychislitel’nye metody v razrabotke mestorozhdenij nefti i gaza. – Novosibirsk: Izd-vo SO RAN, 2000. – 126 s.


Review

For citations:


Rozhin I.I., Argunova K.K. Modeling natural gas underground storage in the hydrated state in permafrost aquifers. Vestnik of North-Eastern Federal University Series "Earth Sciences". 2022;(2):10-21. (In Russ.) https://doi.org/10.25587/SVFU.2022.26.2.002

Views: 342


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-8751 (Online)