Modern tools of analyzing azimuthal magnetotelluric monitoring data at the Bishkek Geodynamic Polygon Test Site
https://doi.org/10.25587/2587-8751-2025-1-44-56
Abstract
The paper presents a methodology for processing magnetotelluric (MT) monitoring data adopted since 2010 at the Bishkek Research Station of the Russian Academy of Sciences (RS RAS). The proposed methodology differs from the standard one as it evaluates impedance relationships after amplitude-phase correction within hourly files of MT sounding obtained from a continuous raw record from stationary and regime stations of the RS RAS network. Modern additions, add-ons, and the creation of additional programs made it possible to adapt and automate the receipt of time-frequency series (TFS) in the form of relative variations of various calculated electromagnetic parameters as color pseudo-sections, as well as adding complementary input information for additional analysis of ongoing geodynamic events. The usage of the patented MT-Corrector and EPI-KIT software packages, developed by Nord-West Ltd., made it possible to automate the acquisition of impedance and phase ratios for TFS post-processing. Integration of data on tidal effects, electromagnetic field characteristics of endogenous origin, and seismic activity ensures correlation between the dynamics of geophysical parameters and the stress–strain state of the medium. The developed toolkit facilitates the identification of stress-sensitive zones, registration of spatiotemporal anomalies, and forecasting of fault activation processes. The obtained results confirm the efficiency of the proposed approach for comprehensive monitoring of geodynamic processes by MT data in tectonically active regions.
Keywords
About the Authors
K. S. NepeinaKyrgyzstan
Kseniia S. NEPEINA – Senior scientific researcher
Bishkek
ResearcherlD: A-9203-2014
Scopus Author ID: 56241170100
E. A. Bataleva
Kyrgyzstan
Elena A. BATALEVA – Head of the Laboratory, Lead scientific researcher
Bishkek
ResearcherlD: AAB-1316-2020
Scopus Author ID: 10043212200
References
1. Rybin AK, Batalev VYu, Bataleva EA, et al. Application features of magnetotelluric and magnetic-variation sounding methods in the Tien Shan mountains. Science and Technological Developments. 2023;102. No. 2-3:4-39. DOI: 10.21455/std2023.2-3-1 (in Russian).
2. Cardoso LH, Bacellar LDAP. Assessment of geoelectrical configurations using reduced physical models for the structural mapping of rock mass and fractured aquifers. Journal of Applied Geophysics. 2021;191:104368. DOI: 10.1016/j.jappgeo.2021.104368.
3. Nevedrova NN, Ponomarev PV. Multi-year monitoring results of electrophysical parameters in Altai mountains seismoactive area by direct current resistivity methods. Interexpo GEO-Siberia. 2018;3:281-287. DOI: 10.18303/2618-981X-2018-3-281-287.
4. Nevedrova NN, Shalaginov AE. Monitoring of electromagnetic parameters in the seismic activity zone of Gornii Altai. Journal of geophysics. 2015. No. 1:31–40 (in Russian).
5. Trapeznikov YuA, Andreeva EV, Batalev VYu, et al. Magnetotelluric soundings in the Kyrgyz Tien Shan mountains. Physics of the Solid Earth. 1997;1:3–20 (in Russian).
6. Batalev VYu, Berdichevsky MN, Golland ML, et al. Interpretation of deep magnetotelluric soundings in the Chuya intermontane depression. Izvestiya. Physics of the Solid Earth. 1989;9:42–45 (in Russian).
7. Batalev VYu, Bataleva EA, Matyukov VE, et al. Study of irreversible deformations in the Tien Shan lithosphere based on magnetotelluric data (methodological aspect). Bulletin of Kamchatka regional association «Educational-scientific center». Earth sciences. 2019;2(42):42-56 (in Russian) DOI: 10.31431/1816-5524-2019-2-42-42-56.
8. Batalev VYu, Volykhin AM, Rybin AK, et al. The structure of the Earth's crust in the eastern part of the Kyrgyz Tien Shan according to the data of the Moscow Geophysical Survey and the State Geophysical Center. Chapter 8. Manifestations of geodynamic processes in geophysical fields. Moscow: Nauka; 1993:96–112 (in Russian).
9. Bataleva EA, Mukhamadeeva VA. Complex electromagnetic monitoring of geodynamic processes in the Northern Tien Shan (Bishkek Geodynamic Test Area). Geodynamics & Tectonophysics. 2018;9(2):461-487. DOI: 10.5800/GT-2018-9-2-0356. (in Russian)
10. Rybin AK, Batalev VYu, Il’chev PV, et al. Magnetotelluric and magnetovariational studies of the Kyrgyz Tien Shan. Russian Geology and Geophysics. 2001;42 (10):1566-1173 (in Russian).
11. Rybin AK, Spichak VV, Batalev VYu, et al. Array magnetotelluric soundings in the active seismic area of Northern Tien Shan. Russian Geology and Geophysics. 2008. 49(5):337-349(in Russian). DOI: 10.1016/j.rgg.2007.09.014.
12. Rybin AK, Bataleva EA, Batalev VYu, et al. Variations in the electrical resistivity of the Earth's crust based on the results of magnetotelluric monitoring of seismically active zones of the Tien Shan. Vestnik KRSU. 2011;11(4):29–40 (in Russian).
13. Zhamaletdinov AA, Mitrofanov FP, Tokarev AD, et al. The influence of lunar and solar tidal deformations on electrical conductivity and fluid regime of the Earth's crust. Doklady Earth Sciences. 2000;371:403-407(in Russian).
14. Rybin AK, Bataleva EA, Nepeina KS, et al. Volumetric and spatial segmentation of the Tien Shan lithosphere according to geophysical data. Geodynamics & Tectonophysics. 2021;12(3):508–543. DOI: 10.5800/GT-2021-12-3-0537. (in Russian).
15. Bataleva EA. The results of monitoring the zones of dynamic influence of the fault structures of the Northern Tien Shan. Interexpo GEO-Siberia. 2022;2(2):332-339 (in Russian).
16. Bataleva EA, Batalev VY, Rybin AK. On the question of the interrelation between variations in crustal electrical conductivity and geodynamical processes. Izvestiya, Physics of the Solid Earth. 2013;49(3):402-410. DOI: 10.1134/S1069351313030038.
17. Bragin VD. Electromagnetic studies of the effects caused by a powerful industrial explosion in the area of the Naryn cascade of hydroelectric power plants (Kambarata). Vestnik KRSU. 2011;11(4):46–53 (in Russian).
18. Bataleva EA, Batalev VYu. Development of programs to analyze the data on azimuthal magnetotelluric monitoring Part 1. Analysis of magnetotelluric monitoring data. Journal "Herald of KRSU". 2014;14(7):3-7 (in Russian).
19. Bataleva EA, Batalev VYu. Development of programs to analyze the data on azimuthal magnetotelluric monitoring Part 2. Development of software for analysis of MT-monitoring data. Journal "Herald of KRSU". 2014;14(7):8-12 (in Russian).
20. Bataleva EA, Batalev VYu. Detailed retrospective analysis of magnetotelluric monitoring data (Bishkek Geodynamic Test). Journal "Herald of KRSU". 2017;17(12):141-144 (in Russian).
21. Bataleva EA. Processing, analysis and interpretation of time-frequency series for magnetotelluric monitoring. IOP Conference Series: Earth and Environmental Science: 2019th International Symposium on Earth Sciences: History, Contemporary Issues and Prospects. 2019;350:012053. DOI: 10.1088/1755-1315/350/1/012053.
22. Bataleva EA, Batalev VYu. The results of an analysis of the Kambarata experiment with attraction synchronous measurement technique. Journal "Herald of KRSU". 2017;17(1):181-184 (in Russian).
23. Rybin A, Bataleva E, Nepeina K, et al. Response of cracking processes in variations of geophysical fields. Journal of Applied Geophysics. 2020;181:104144. DOI: 10.1016/j.jappgeo.2020.104144.
24. Nepeina K, Bataleva E, Alexandrov P. Electromagnetic Monitoring of Modern Geodynamic Processes: An Approach for Micro-Inhomogeneous Rock through Effective Parameters. Applied Sciences (Switzerland). 2023;13(14):8063. DOI: 10.3390/app13148063.
25. Yalov TV. Electrical anisotropy of horizontally inhomogeneous media. Candidate’s dissertation (Engineering). Lomonosov Moscow State Unviersity. 2014:106 (in Russian).
26. Shalaginov AE, Nevedrova NN, Sanchaa AM, et al. Electrical anisotropy according to dc methods in the Bystrovka field area (shore reservoir in the Novosibirsk region). Interexpo GEO-Siberia. 2019;2(2):158-164 (in Russian).
27. Suhorukova KV, Petrov AM. Electrical anisotropy of terrigenous deposits: a brief overview of approaches to its determination from electrical logging data in vertical wells. Russian Journal of Geophysical Technologies. 2021;3:41-66. DOI: 10.18303/2619-1563-2021-3-41. (in Russian)
28. Luo T, Hu X, Chen L, et al. Investigating the Magnetotelluric Responses in Electrical Anisotropic Media. Remote Sens. 2022;14:2328. DOI: 10.3390/rs14102328.
29. Busby J. The application of time-lapse azimuthal apparent resistivity measurements for the prediction of coastal cliff failure. Journal of Applied Geophysics, 2006;59(4):261-272. DOI: 10.1016/j.jappgeo.2005.10.004.
30. Salam R, Parnadi WW. Laboratory-scaled Azimuthal Resistivity Survey for Fracture Detection. IOP Conf. Ser: Earth Environ. Sci. 2021;873:012079. DOI: 10.1088/1755-1315/873/1/012079.
31. Gasimov E, Pekşen E, Durdağ D, et al. Modeling and interpretation of electrical resistivity data in anisotropic media using a generalized regression neural network: A case study on the Lokbatan mud volcano, Azerbaijan. Journal of Applied Geophysics. 2024;224:105365. DOI: 10.1016/j.jappgeo.2024.105365.
32. Nepeina KS, Valuyskiy AYu. Technological approach to separating continuous magnetotelluric sounding data for seismoelectromagnetic studies. Modern engineering and technology in scientific research. Bishkek: Research Station of the Russian Academy of Sciences in Bishkek, 2021:159–167 (in Russian).
33. Internet site Nord-West Ltd [https://nw-geo.ru/] (Date of access 21.11.2024).
34. Zorin N, Aleksanova E, Shimizu H, et al. Validity of the dispersion relations in magnetotellurics: Part I-theory. Earth, Planets and Space. 2020;72(1):9. DOI: 10.1186/s40623-020-1133-4.
35. Nepeina KS, Matiukov VE. Upgrading of a technique for visual comparing for the results of azimuthal magnetotelluric monitoring with the seismic events parameters. Interexpo GEO-Siberia. 2022;2(2):150-157 (In Russian). DOI: 10.33764/2618-981X-2022-2-2-150-157.
36. Berdichevskii MN, Dmitriev VI, Novikov DB, et al. Analysis and Interpretation of the Magnetotelluric Data. Dialog-MGU, Moscow. 1997:161(In Russian).
37. Zabinyakova OB, Rybin AK. Programma MTDataVar rascheta variatsiy monitoringovykh magnitotelluricheskikh dannykh. Software RU 2023686394 Rospatent. 2023 (In Russian).
38. Rybin AK, Bataleva EA, Aleksandrov PN, Nepeina KS. Electromagnetic studies of present geodynamic processes in the lithospheres of the regions of intracontinental orogeny: the Tien Shan example. Izvestiya, Physics of the Solid Earth. 2022;58(5):690-705. DOI: 10.1134/s1069351322050093.
39. Batalev, V.Yu., Bataleva, E.A., Rybin, A.K., Aleksandrov, P.N., Matiukov, V.E., Nepeina, K.S., Zabinyakova, O.B., and Kaznacheev, P.A., Theoretical substantiation of studies of deformation processes in the Earth's lithosphere based on seismic and electromagnetic fields of endogenous origin, Mater. VIII Mezhdunar. molodezhnoi nauchn.-prakt. konf.: Matematicheskoe modelirovanie protsessov i sistem, Ch. 1 (Proc. VIII Int. Youth Sci. Appl. Res. Conf.: Mathematical Modeling of Processes and Systems, Part 1), Mustafina, S.A., Ed., Sterlitamak, 2018, Sterlitamak: Sterlitamakskii filial BashGU. 2018:95-122 (in Russian).
40. Aleksandrov PN, Bataleva EA. Programma razdeleniya elektromagnitnogo polya po polozheniyu istochnikov po dannym magnitotelluricheskikh zondirovanii. RU 2019618606. Rospatent. 2019.
Review
For citations:
Nepeina K.S., Bataleva E.A. Modern tools of analyzing azimuthal magnetotelluric monitoring data at the Bishkek Geodynamic Polygon Test Site. Vestnik of North-Eastern Federal University Series "Earth Sciences". 2025;(4):44-56. (In Russ.) https://doi.org/10.25587/2587-8751-2025-1-44-56
JATS XML










