Preview

Vestnik of North-Eastern Federal University Series "Earth Sciences"

Advanced search

GAS FLOW SIMULATION USING THE DARCY-FORCHHEIMER EQUATION

https://doi.org/10.25587/SVFU.2021.23.3.004

Abstract

We discuss the modeling of gas ow in the reservoir, described by the equations of Darcy and Darcy- Forchheimer. Mathematical modeling of uid ow in porous media is the most crucial element in understanding the processes in oil and gas production; it is used when choosing the optimal option for developing oil and gas elds. The primary ltration law is the linear Darcy equation. However, it is known that this equation is not ful lled at high ltration velocities due to the manifestation of inertial forces. In problems of nonlinear ltration, the motion of liquid and gas is most accurately described by the two-term Darcy-Forchheimer law. The work aimed at studying the nonlinear law of Darcy-Forchheimer ltration in the bottom-hole zone of a gas well. In the course of the research, we performed a comparative analysis of the application of Darcy and Darcy-Forchheimer equations. To achieve this goal, we formulated the following tasks: to study the ltration process’s mathematical models, simulate the bottom-hole zone of a gas well, and compare the laws of Darcy and Darcy-Forchheimer. To obtain visual results, we used mathematical modeling. For the numerical solution of differential equations, we used the nite element method. The software implementation was carried out on the FEniCS computational package, which simpli es the solution of equations by the nite element method. We conclude that we got overestimated ow rates of gas wells when using the Darcy law, and using the Darcy- Forchheimer law, we were able to get data close to the actual ow rates. The simulations showed that the use of the Darcy-Forchheimer law is applicable for modeling gas ltration in actual conditions.

Keywords


About the Authors

A. E. Kolesov
M.K. Ammosov North-Eastern Federal University
Russian Federation


M. N. Zakharova
M.K. Ammosov North-Eastern Federal University
Russian Federation


References

1. Басниев К.С., Кочина И.Н., Максимов В.М. Подземная гидромеханика: учебник для вузов. - М.: Недра, 1993. - 416 с.

2. Каневская Р.Д. Математическое моделирование гидродинамических процессов разработки месторождений углеводородов. - М.-Ижевск: Институт компьютерных исследований, 2003. - 128 c.

3. Леонтьев Н.Е. Основы теории фильтрации. - М.: МАКС Пресс, 2017. - 88 с.

4. Азиз Х., Сеттари Э. Математическое моделирование пластовых систем. - М: Недра, 1982. - 407 с.

5. Chen Z., Huan G., Ma. Y. Computational methods for multiphase flows in porous media. - Philadelphia: SIAM, 2006. - 549 p.

6. Афанасьева Н.М., Колесов А.Е. Математическое моделирование задач фильтрации. - Якутск: Издательский дом СВФУ, 2019. - 120 с.

7. Girault V., Wheeler M. F. Numerical discretization of a Darcy-Forchheimer model // Numerische Mathematik. - 2008. - Vol 110, No 2. - P.161-198.

8. Zeng F., Zhao G. Gas well production analysis with non-Darcy flow and real-gas PVT behavior // Journal of Petroleum Science and Engineering. - 2007. - Vol. 59, No 3-4. - P. 169-182.

9. Pascal H., Quillian R.G., Kingston J. Analysis of Vertical Fracture Length and Non-Darcy Floe Coefficient Using Variable Rate Tests // Paper SPE 9438 presented at the SPE Annual Technical Conference and Exhibition. - Dallas, September 21-24, 1980.

10. Самарский А.А., Вабищевич П.Н. Аддитивные схемы для задач математической физики. - М.: Наука, 2001. - 312 с.

11. Alnæs M. S., Blechta J., Hake J., Johansson A. et al. The FEniCS Project Version 1.5 // Archive of Numerical Software. - 2015. - Vol. 3, No. 100. - P. 9-23.

12. Лихачев Е.Р. Критические параметры газ / Е.Р. Лихачев // Вестник ВГУ. Серия: Физика. Математика. - 2013. - №1. - С. 94-98.


Review

For citations:


Kolesov A.E., Zakharova M.N. GAS FLOW SIMULATION USING THE DARCY-FORCHHEIMER EQUATION. Vestnik of North-Eastern Federal University Series "Earth Sciences". 2021;(3):73-80. (In Russ.) https://doi.org/10.25587/SVFU.2021.23.3.004

Views: 333


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-8751 (Online)