Climate basis for planning regional actions for adaptation to climate change
https://doi.org/10.25587/2587-8751-2025-1-85-97
Abstract
Keywords
About the Author
N. I. TananaevRussian Federation
Nikita I. Tananaev, Cand. Sci. (Geography), Laboratory Head, Associate Professor; Leading Researcher, ResearcherID: J-3471-2012, Scopus Author ID: 12782200000
References
1. Sippel S., Meinshausen N., Fischer E.M. et al. Climate change now detectable from any single day of weather at global scale. Nature Climate Change. 2020;10:35–41. https://doi.org/10.1038/s41558-019-0666-7.
2. Collins M., Beverley J.D., Bracegirdle T.J. et al. Emerging signals of climate change from the equator to the poles: new insights into a warming world. Frontiers in Science. 2024;2:1340323. https://doi.org/10.3389/fsci.2024.1340323.
3. Meierrieks D., Stadelmann D. Is temperature adversely related to economic development? Evidence on the short-run and the long-run links from sub-national data. Energy Economics. 2024;136:107758. https://doi.org/10.1016/j.eneco.2024.107758.
4. Tol R.S.J. A meta-analysis of the total economic impact of climate change. Energy Policy. 2024;185:113922. https://doi.org/10.1016/j.enpol.2023.113922.
5. Economic Effects of Climate Change in Russia: Analysing Risks and Opportunities for Sustainable Development of the Country. Moscow: INP RAS; 2024:12 (in Russian).
6. Kahn M.E., Mohaddes K., Ng R.N.C. et al. Long-term macroeconomic effects of climate-change: Crosscountry analysis. IMF Working Paper WP/19/215. International Monetary Fund; 2019:58.
7. Mann, M.E. Warming ends when carbon pollution stops. Frontiers in Science. 2023;1:1256273. https://doi.org/10.3389/fsci.2023.1256273.
8. Climate Doctrine of the Russian Federation (approved by Presidential Decree No. 812 of 26 October 2023), 21 p. (in Russian).
9. Zadorin M.Yu. Overview of International Standards and Russian Legislation on Climate Change Adaptation. Arktika i Sever. 2023;(53):273–290. https://doi.org/10.37482/issn2221-2698.2023.53.273 (in Russian).
10. Molchanova Y.P., Guseva T.V., Malkov A.V. et al. Adaptation to climate change as a planning element: the possibility of applying European experience for the city of Moscow. Bulletin of D.I. Mendeleev Russian Chemical Technology University. Humanitarian and socio-economic studies. 2017;(8-2):163-171.
11. Bulavinova M.P. Conceptual approaches in climate change adaptation research (review). Naukovedcheskie issledovanija. 2023;(2):132-154 (in Russian).
12. Vladimirov A.V. Classification of hydrological droughts. Uchenye zapiski RSHMU. 2012;(23):5-12 (in Russian).
13. Fischer E.M., Sippel S., Knutti R. Increasing probability of record-shattering climate extremes. Nature Climate Change. 2021;11:689–695. https://doi.org/10.1038/s41558-021-01092-9.
14. Lüthi S., Fairless C., Fischer E.M. et al. Rapid increase in the risk of heat-related mortality. Nature Communications. 2023;14:4894. https://doi.org/10.1038/s41467-023-40599-x.
15. Liang J., Qiu Y. (L.), Wang B. et al. Impacts of heatwaves on electricity reliability: Evidence from power outage data in China. iScience. 2025;28(1):111855. https://doi.org/10.1016/j.isci.2025.111855.
16. Report on climate risks on the territory of the Russian Federation (edited by V.M. Kattsov). Saint-Petersburg: Main Geophysical Observatory; 2017:106 (in Russian).
17. Tananaev N.I., Nakhodkin N.A., Golovanov A.O. Natural drivers of high floods in the middle reach of the Amga River, Central Yakutia. Vestnik of North-Eastern Federal University Series “Earth Sciences”. 2022;(3):61-75 (in Russian). https://doi.org/10.25587/SVFU.2022.27.3.006.
18. Dymnikov V.P., Lykosov V.N., Volodin E.M. Problems of Modelling the Climate and its Changes. Izvestiya Rossiiskoi Akademii Nauki. Atmospheric and Oceanic Physics. 2006;42(5):618-636 (in Russian).
19. Merchant C.J., Paul F., Popp T. et al. Uncertainty information in climate data records from Earth observation. Earth System Science Data. 2017;9(2): 511–527. https://doi.org/10.5194/essd-9-511-2017.
20. Vörösmarty C.J., Fekete B., Tucker B.A. Global River Discharge, 1807-1991, V. 1.1 (RivDIS). ORNL DAAC, Oak Ridge Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/199.
21. Global Runoff Data Centre. Federal Institute of Hydrology, Koblenz, Germany. URL: https://portal.grdc.bafg.de/applications/public.html?publicuser=PublicUser.
22. Barbarossa V., Huijbregts M.A.J., Beusen A.H.W. et al. FLO1K, global maps of mean, maximum and minimum annual streamflow at 1 km resolution from 1960 through 2015 Scientific Data. 2018;5:180052. https://doi.org/10.1038/sdata.2018.52.
23. Feng D., Gleason C.J., Lin P. et al. Recent changes to Arctic river discharge. Nature Communications. 2021;12:6917. https://doi.org/10.1038/s41467-021-27228-1.
24. Zhang X., Alexander L., Hegerl G.C. et al. Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Climate Change. 2011;2(6):851–870. https://doi.org/10.1002/wcc.147.
25. Ignatyeva Y.I., Tananaev N.I. Recurrence of cyclonic events over the Sakha Republic (Yakutia) in summer months. Vestnik of North-Eastern Federal University Series “Earth Sciences”. 2024;(2):46-53 (in Russian). https://doi.org/10.25587/2587-8751-2024-2-46-53
26. Dyakov M.Yu., Mikhailova T.R. Actual issues of climatic adaptation of the Kamchatka Territory. Scientific Proceedings of the All-Russia Economic and Economic Organisation of Russia. 2024;247:390–414. https://doi.org/10.38197/2072-2060-2024-247-3-390-414.
27. Kattsov V.M., Khlebnikova E.I., Shkolnik I.M. et al. Probabilistic scenario forecasting of regional climate as a basis for the development of adaptation programmes in the economy of the Russian Federation. Russian Meteorology and Hydrology. 2020;(5):46-58.
28. O’Neill B.C., Tebaldi C., van Vuuren D.P. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development. 2016;9(9):3461–3482. https://doi.org/10.5194/gmd-9-3461-2016.
29. Tebaldi C., Debeire K., Eyring V. et al. Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6. Earth System Dynamics. 2021;12(1):253–293. https://doi.org/10.5194/esd-12-253-2021.
30. Tananaev N.I. Regional ensemble of CMIP6 global climate models for Sakha (Yakutia) Republic, Northern Eurasia. Polar Science. 2024;41:101066. https://doi.org/10.1016/j.polar.2024.101066.
31. Crawford J., Venkataraman K., Booth J. Developing climate model ensembles: A comparative case study. Journal of Hydrology. 2019;568: 160–173. https://doi.org/10.1016/j.jhydrol.2018.10.054.
32. Yilmaz B., Aras E., Nacar S. A CMIP6-ensemble-based evaluation of precipitation and temperature projections. Theoretical and Applied Climatology. 2024;155:7377–7401. https://doi.org/10.1007/s00704-024-05066-7.
33. Mahony C.R., Wang T., Hamann A. et al. A global climate model ensemble for downscaled monthly climate normals over North America. International Journal of Climatology. 2022;42(11):5871–5891. https://doi.org/10.1002/joc.7566.
34. Lafferty D.C., Sriver R.L. Downscaling and bias-correction contribute considerable uncertainty to local climate projections in CMIP6. npj Climate and Atmospheric Science. 2023;6:158. https://doi.org/10.1038/s41612-023-00486-0.
35. GOST R 22.1.09-99 Safety in emergency situations. Monitoring and forecasting of forest fires. Moscow: Gosstandart of Russia; 2000:8.
Review
For citations:
Tananaev N.I. Climate basis for planning regional actions for adaptation to climate change. Vestnik of North-Eastern Federal University Series "Earth Sciences". 2025;(1):85-97. (In Russ.) https://doi.org/10.25587/2587-8751-2025-1-85-97